Selective Conversion of 4-Isopropenyl-1-methylcyclohex-1-ene to 4-Isopropylidenyl-1-methylcyclohex-1-ene over SO₄²⁻/ZrO₂

Tsunehiro Tanaka, Akemi Itagaki, Geng Zhang, Hideshi Hattori, and Kozo Tanabe

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan

Received February 16, 1989; revised November 2, 1989

Isomerization of limonene 1 was carried out over various metal oxides and a metal phosphate at 60°C and a normal pressure to identify catalysts over which terpinolene 2 is preferentially formed. It has been found that strong acid catalysts such as SO_4^{2-}/ZrO_2 and $SiO_2-Al_2O_3$ are active and of these SO_4^{2-}/ZrO_2 is capable of catalyzing the reaction selectively. The SO_4^{2-} promotion of $SiO_2-Al_2O_3$ brought about the depression of the activity of bare $SiO_2-Al_2O_3$. These results suggest that both Brønsted and Lewis acid sites are active sites. Selectivity to terpinolene 2 is better on the strong Lewis sites. However, SO_4^{2-}/Fe_2O_3 , a strong Lewis solid acid, was inactive for the reaction, suggesting that isomerization of limonene 1 to terpinolene 2 is not dominated only by the strong Lewis acidity. Effects of SO_4^{2-} promotion to ZrO_2 and Fe_2O_3 are discussed. (1990) Academic Press, Inc.

4-Isopropylidenyl-1-methylcyclohex-1-ene 2 (terpinolene), a beneficial compound as an intermediate material for herbicide, can be synthesized by isomerization of 4isopropenyl-1-methylcyclohex-1-ene 1 (limonene) catalyzed by acids in the homogeneous system. A liquid SO₂ and organic acids are used as a catalyst in homogeneous systems (1). However, severe reaction conditions are required to catalyze the reaction selectively: a high pressure for the liquid SO_2 and a high temperature for organic acids. The reaction involving transfer of the C=C double bond proceeds accompanied by the formation of 4-isopropyl-1-methyl-(p-cymene), 4-isopropyl-1benzene 3 methylcyclohexa-1,3-diene 4 (α -terpinen), 4-isopropyl-1-methylcyclohexa-1,4and diene 5 (y-terpinen), resulting in low selectivity to 2 even at a low level conversion of 1.

In the present work, we carried out the reaction over various acid, base, and acidbase catalysts to find a highly selective catalyst effective under mild conditions. We wish to report here that zirconium oxide treated with SO_4^{2-} ions (2) is capable of catalyzing the reaction selectively at a relatively low temperature and a normal pressure.

EXPERIMENTAL

Solid metal oxides used as catalysts were MgO (Merck), Al₂O₃ (JRC-ALO2, reference catalyst supplied from Catalysis Society Japan), ZrO₂ prepared by hydrolysis of $ZrO(NO_3)_2$, TiO_2 - ZrO_2 prepared by coprecipitation from ZrOCl₂ and TiCl₄ solution by addition of NH₄OH solution (final pH 10), AlPO₄ (3), Nb₂O₅ \cdot nH₂O (CBMM), $SiO_2 - Al_2O_3$ (JRC-SAH1), SO_4^{2-}/ZrO_2 (2), SO_4^{2-}/Fe_2O_3 (4), and $SO_4^{2-}/SiO_2-Al_2O_3$ prepared in the same way as SO_4^{2-}/ZrO_2 . The catalyst samples were activated by evacuation at various temperatures before each run, as given in Table 1. The powdered catalyst was placed in a quartz reactor maintained at 333 K without exposure to air and 3.0 ml of 1 was added under atmospheric

Catalysts	Activation ^b (K)	Conversion ^c (%)	Selectivity ^d (%)			
			2	3	4	5
MgO	1073	0.0			_	
ZrO ₂	803	0.0		-	_	
Al_2O_3	773	0.0		-	_	
AlPO₄	973	0.0				
TiO ₂ –ZrO ₂	823	0.0				
$Nb_2O_5 \cdot nH_2O$	373	0.0		-	_	
SiO ₂ -Al ₂ O ₃ ^e	773	17.2	59.0	4.6	12.9	17.1
SiO ₂ -Al ₂ O ₃	773	87.7	30.0	7.9	22.1	20.7
SO_4^{2-}/ZrO_2	903	20.4	83.9	0.2	8.9	8.4
SO_4^{2-}/ZrO_2^{f}	903	51.8	69.3	0.2	15.8	11.0
$SO_4^{2-}/SiO_2-Al_2O_3$	773	5.4	45.6	13.4	13.1	14.2
96% H₂SO₄ ^g		27.0	33.3	1.1	23.0	31.6
SO_4^{2-}/Fe_2O_3	643-943	0.0				

TABLE 1

Activity of Various Metal Oxides for Conversion of 1^a

^a 1, 3.0 ml; catalyst amount, 200 mg; reaction temperature, 333 K; reaction time, 1 h.

^b Activation temperature of catalyst.

^c Conversion of **1** based on initial amount of **1**.

^d Selectivity to 2, 3, 4, and 5.

^e This run was carried out at 323 K.

^f The reaction time was 3 h.

⁸ 0.4 ml of 96% sulfuric acid was added to 3 ml of 1.

dried oxygen-free nitrogen. During a reaction, the reaction mixture was continually stirred. A small portion of the reaction mixture was periodically withdrawn and filtered for analysis by GLC.

RESULTS AND DISCUSSION

Isomerization of Limonene over Various Catalysts

Table 1 summarizes the results of the reaction over various catalysts. A base catalyst (MgO), acid-base catalysts (ZrO₂, Al₂O₃, and TiO₂-ZrO₂), and relatively weak acid catalysts (AlPO₄ and Nb₂O₅ · nH₂O) were completely inactive although MgO and ZrO₂ have been reported previously to convert 1 at 273 K in a pulse reaction (5). On the other hand, strong acids such as SO₄²⁻/ZrO₂ and SiO₂-Al₂O₃ showed fairly high activities. It should be noted that SO₄²⁻/ZrO₂ exhibited much higher selectivity than SiO₂-Al₂O₃.

The selectivities to 2 are plotted against

conversion for SO_4^{2-}/ZrO_2 in Fig. 1. The data were obtained by changing the reaction temperature and activation temperature of the catalyst. A good correlation between the selectivity and the conversion

FIG. 1. Plots of conversions of 1 vs selectivities to 2 over (a) SO_4^{2-}/ZrO_2 pretreated at 743 K (\triangle), 903 K (\bigcirc), and 973 K (\square), and (b) SiO₂-Al₂O₃ pretreated at 773 K carried out at 313 K (\blacklozenge), 323 K (\blacksquare), and 333 K (\blacklozenge).

FIG. 2. Time courses of the product distribution and conversion of reaction of 1 over (a) SO_4^{2-}/ZrO_2 pretreated at 903 K and (b) SiO_2 -Al₂O₃ pretreated at 773 K. (**I**) Conversion of 1; (\bigcirc) 2; (**O**) 3; (\triangle) 4 and 5. Both reactions were carried out at 333 K.

was obtained regardless of the differences in the reaction temperature and pretreatment temperature. At all conversions, SO_4^{2-}/ZrO_2 gave higher selectivities than $SiO_2-Al_2O_3$.

Figure 2a shows a time course of the reaction on SO_4^{2-}/ZrO_2 carried out at 333 K. With increasing conversion of 1, the yield of 2 increased and then decreased accompanied by the production of 3, 4, and 5. The increment of the yields of 4 and 5 reduced with reaction time while the increment of the vield of 3 slightly increased. On SiO₂- Al_2O_3 , 1 was converted faster than on SO_4^{2-}/ZrO_2 as shown in Fig. 2b and the conversion became nearly constant after 1 h. By contrast, the yield of 2 monotonously decreased with reaction time after 1 h and the yield of 4 and 5 increased and then decreased. The increment of the yield 3 corresponds to the change of the sum of the yields of 2, and 4 and 5. These results suggest that the reaction proceeds through the intermediate 2 to the dehydrogenated compound 3, presumably through mentadienes 4 and 5 as presented in previous work (5). Thus the difference in the selectivity between SO_4^{2-}/ZrO_2 and $SiO_2-Al_2O_3$ is considered to be related to the stability of 2 over the catalysts. It is supposed that the adsorbed species 2 on SiO₂-Al₂O₃ undergoes isomerization to 4 and 5 and dehydrogenation to 3 faster than those on SO_4^{2-1} ZrO_2 . As the active sites on SO_4^{2-}/ZrO_2 , either the sulfate ions or Lewis acid sites generated on ZrO_2 by interaction with SO_4^{2-} are possible. To examine the possibility of sulfate ions alone being active sites, we carried out the reactions catalyzed by sulfuric acid and SO_4^{2-} -modified $SiO_2-Al_2O_3$. The results are shown in Table 1. Both homogeneous and heterogeneous reactions gave lower selectivities than those over SO_4^{2-1} ZrO_2 . In particular, the selectivity and the activity of $SO_4^{2-}/SiO_2 - Al_2O_3$ were lower than those of SiO₂-Al₂O₃, suggesting that loaded sulfate ions block the Brønsted acid sites of SiO₂-Al₂O₃, which are recognized as the active sites. These results also suggest that active sites other than sulfate ions play a significant role, e.g., strong Lewis acid sites generated by interaction between ZrO_2 and SO_4^{2-} (6). It has been proposed that like SO_4^{2-}/ZrO_2 , strong Lewis acid sites can be generated on iron oxide when $Fe(OH)_3$ is treated with SO_4^{2-} ions, followed by calcination (7, 8). Since the generation mechanism of the strong acid sites of SO_4^{2-1}

Fe₂O₃ is explained in the same way as that for SO₄²⁻/ZrO₂ (6) and its acid strength is thought to be higher than SiO₂-Al₂O₃ (8), considerable activity and selectivity for SO₄²⁻/Fe₂O₃ is expected. However, thus prepared SO₄²⁻/Fe₂O₃ was completely inactive for the activation at temperatures ranging from 643 to 943 K as given in Table 1.

SO_4^{2-} -Promoted Metal Oxides

Acid strength of SO_4^2/Fe_2O_3 has not been evaluated directly to our knowledge; the dark color of SO_4^{2-}/Fe_2O_3 prevents the determination of its Hammett function by color indicator methods (9). However, to try to evaluate the acidity of SO_4^{2-}/Fe_2O_3 , we have summarized in Table 2 the earlier results, reported by Hino (10), of acid-catalyzed reactions over related catalysts. Acid strength for SO_4^{2-}/Fe_2O_3 is slightly weaker than that for SO_4^{2-}/ZrO_2 (H₀ < -16.04) (11) but somewhat stronger than that for SiO₂- Al_2O_3 (-12.7 < H_0 < -11.35) (8). The results suggest that the acid strength of SO_4^{2-}/Fe_2O_3 is presumably within the range of $-12.7 < H_0 < -16.04$ and that the activity for the present reaction is dependent on factors in addition to the acid strength of the catalyst. A similar effect of sulfate-promotion has been reported by Itoh and Tada (12). They found that sulfate-promotion to AlPO₄ does not cause an increase in acid

TABLE 2

Summary of Acid-Catalyzed Reactions over the Related Catalysts^a

Reaction	Conversion				
	SO ₄ ²⁻ /Fe ₂ O ₃	SO ₄ ²⁻ /ZrO ₂	SiO ₂ -Al ₂ O ₃		
n-Butane isomerization ^b	184	30.5 ^d	0.0		
Dehydration of ethanol ^e	40-59	78-82	12.0		

" Taken from Ref. 10.

^b Carried out in closed circulating system at 298 K. Catalyst amount, 1.0 g. Initial amount of *n*-butane, 0.35 mmol.

^c 20 h.

^d 24 h.

 e Carried out with a pulse reactor at 343 K. Catalyst amount, 30 mg. Pulse size, 0.4 μ l.

strength but influences its catalytic activity and selectivity for 1-butanol dehydration.

Active sites for both the sulfate-promoted metal oxide catalysts are thought to be Lewis acid sites, the acidity of which is enhanced by strong electron transfer to sulfate ion(s). Isomerization of olefin like the present reaction is initiated by abstraction of an allylic hydrogen as hydride by Lewis acid sites. In such cases, it is probable that a bulky olefin molecule is adsorbed and stabilized by interactions with plural sites of the catalyst surface (13). Thus, the surface structure of the catalyst should have an effect on the reactivity of the olefin isomerization.

It is often the case that a zirconium ion is surrounded by seven to eight oxygens in the bulk oxide and the Zr-O bondlength is longer than the length between 3d metal and oxygen atoms. SO_4^{2-} -promoted ZrO_2 has a tetragonal ZrO₂ phase while unpromoted ZrO_2 has a monoclinic one (14). In a tetragonal phase of zirconium oxide, the Zr-O bond lengths are reported to be 2.07 and 2.46 Å (15) while SO_4^{2-}/Fe_2O_3 has an α -Fe₂O₃ phase in which Fe₋O bond lengths are 1.99 and 2.06 Å (16). The difference in bond lengths for each oxide is expected to appear for each surface structure. In addition, it has been found by means of TPD methods using carbon dioxide that weak basic sites are also present on SO_4^{2-}/ZrO_2 (17) but not at all on SO_4^{2-}/Fe_2O_3 . This is an unexpected result because there exists one SO_4^{2-} ion per 15–30 Å² on the surfaces for both of the metal oxides and this is almost the same level of population of surface metal cations. At such a high population of sulfate, most of the surface oxygen anions can "see" and "feel" sulfate ions through neighboring zirconium cations. Therefore, weak basic sites are possibly located at the sites adjacent to strong Lewis acid sites generated by coordination of sulfate ions. In catalysis by solid acid and/or base, the importance of the concept of acid-base bifunctionality has been emphasized (18); not only the acid and base strength but also the orientation of acid and base are important. The high selectivity observed for SO_4^{2-}/ZrO_2 may be attributed to the stabilization of surface intermediate on strong acid and base sites, although at present we have no evidence that the reactant molecule interacts with the base site.

Therefore, the high activity and selectivity observed for SO_4^2/ZrO_2 can be due to the particular nature of SO_4^2/ZrO_2 deficient to other SO_4^2 -promoted superacids: strong Lewis acidity, high coordination number of zirconium cations, long Zr-O bonds, and the presence of base sites adjacent to acid sites.

ACKNOWLEDGMENT

Chemicals used for the reactions and the identification of products were kindly supplied from Yasuhara Chemical Co., Japan.

REFERENCES

- 1. US Patent 604358, 190612.
- Hino, M., Kobayashi, S., and Arata, K., J. Amer. Chem. Soc. 101, 6439 (1979).
- Itoh, H., Tada, A., and Tanabe, K., *Chem. Lett.*, 1567 (1981); Tada, A., Yoshida, M., and Hirai, M., *Nippon Kagaku Kaishi*, 1379 (1973).

- Yamaguchi, T., Jin, T., and Tanabe, K., J. Phys. Chem. 90, 3148 (1986).
- 5. Tanaka, Y., Hattori, H., and Tanabe, K., Bull. Chem. Soc. Japan 51, 3641 (1978).
- Jin, T., Yamaguchi, T., and Tanabe, K., J. Phys. Chem. 90, 4794 (1986).
- 7. Tanabe, K., Kayo, A., and Yamaguchi, T., J. Chem. Soc. Chem. Commun., 602 (1981).
- 8. Hino, M., and Arata, K., Chem. Lett., 477 (1979).
- 9. Tanabe, K., "Solid Acids and Bases," Chap. 2. Kodansha, 1970.
- 10. Hino, M., Dsc. Thesis, 1981, Hokkaido University, Japan.
- 11. Hino, M., and Arata, K., J. Chem. Soc. Chem. Commun., 851 (1980).
- 12. Itoh, H., and Tada, A., Nippon Kagaku Kaishi, 698 (1976).
- Tanabe, K., and Nishizaki, T., in "Proceedings, 6th International Congress on Catalysis, London 1976" (G. C. Bond, P. B. Wells, and F. C. Tompkins, Eds.), Vol. 2, p. 863. The Chemical Society, London, 1977.
- 14. Tanabe, K., and Yamaguchi, T., in "Successful Design of Catalysts" (T. Inui, Ed.), p. 99. Elsevier, Amsterdam, 1988.
- 15. Teufer, G., Acta Crystallogr. 15, 1187 (1962).
- 16. Fasiska, E. J., Corros. Sci. 7, 833 (1967).
- 17. Ebitani, K., Tanaka, T., and Hattori, H., unpublished results.
- Tanabe, K., in "Acid-Base Catalysts: Proceedings, Intern. Symp. Acid-Base Catal. Sapporo, 1988" (K. Tanabe, H. Hattori, T. Yamaguchi, and T. Tanaka, Eds.), p. 513. Kodansha-VHC, Tokyo, 1989, and references therein.